Perbandingan Model Peramalan Volatilitas Return Saham PT Aneka Tambang Tbk (ANTM) Periode 2015–2025
Keywords:
Return saham, Volatilitas, Model GARCH, EGARCH, , TGARCHAbstract
Penelitian ini bertujuan untuk menganalisis karakteristik volatilitas serta membandingkan kinerja beberapa model runtun waktu dalam memodelkan return saham PT Aneka Tambang Tbk selama periode 2015–2025. Data yang digunakan berupa harga penutupan harian saham dengan total 2.640 observasi yang kemudian dihitung return saham menggunakan return logaritmik menjadi 2.639 observasi. Tahapan analisis yang digunakan pada penelitian ini, yaitu uji stasioneritas menggunakan Augmented Dickey–Fuller (ADF), pengujian heteroskedastisitas bersyarat menggunakan ARCH-LM test, serta estimasi model volatilitas GARCH(1,1), EGARCH(1,1), dan TGARCH (1,1), estimasi parameter, pemilihan model terbaik, serta uji diagnostik terhadap model terbaik. Hasil uji ADF menunjukkan bahwa return saham bersifat stasioner, sedangkan uji ARCH-LM menunjukkan adanya heteroskedastisitas. Berdasarkan hasil analisis diperoleh model EGARCH(1,1) adalah model terbaik dengan nilai Log-Likelihood, AIC, serta BIC terkecil. Selanjutnya berdasarkan hasil uji diagnostik menunjukkan bahwa model EGARCH(1,1) layak digunakan untuk melakukan peramalan pada volatilitas return saham.
References
Ahmed, R. R., Vveinhardt, J., Streimikiene, D., & Zahid, S. (2018). Forecasting stock market volatility: Evidence from GARCH family models. Economic Research-Ekonomska Istraživanja, 31(1), 1523–1537. https://doi.org/10.1080/1331677X.2018.1480966
Alberg, D., Shalit, H., & Yosef, R. (2008). Estimating stock market volatility using asymmetric GARCH models. Applied Financial Economics, 18(15), 1201–1208. https://doi.org/10.1080/09603100701604225
Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31(3), 307–327. https://doi.org/10.1016/0304-4076(86)90063-1
Brooks, C. (2019). Introductory econometrics for finance (4th ed.). Cambridge University Press.
Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica, 50(4), 987–1007. https://doi.org/10.2307/1912773
Glosten, L. R., Jagannathan, R., & Runkle, D. E. (1993). On the relation between the expected value and the volatility of the nominal excess return on stocks. Journal of Finance, 48(5), 1779–1801. https://doi.org/10.1111/j.1540-6261.1993.tb05128.x
Karmakar, M. (2007). Asymmetric volatility and risk-return relationship in the Indian stock market. South Asia Economic Journal, 8(1), 99–116. https://doi.org/10.1177/139156140600800106
Khan, M. A., & Ahmad, I. (2019). Modeling exchange rate volatility using GARCH models. Journal of Applied Economics and Business Research, 9(1), 30–41.
Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach. Econometrica, 59(2), 347–370. https://doi.org/10.2307/2938260
Nguyen, T. T., & Le, A. H. (2020). Comparing the performance of GARCH family models in capturing stock market volatility in India. Journal of Asian Finance, Economics and Business, 7(3), 45–56. https://doi.org/10.13106/jafeb.2020.vol7.no3.45
Poon, S. H., & Granger, C. W. J. (2003). Forecasting volatility in financial markets: A review. Journal of Economic Literature, 41(2), 478–539. https://doi.org/10.1257/002205103765762743
Rahman, M. L., & Hossain, M. A. (2022). Volatility modelling of Malaysia Islamic and conventional stock prices using GARCH and EGARCH models. AIP Conference Proceedings, 2472(1), 030012. https://doi.org/10.1063/5.0092872
Sadorsky, P. (2006). Modeling and forecasting petroleum futures volatility. Energy Economics, 28(4), 467–488. https://doi.org/10.1016/j.eneco.2006.04.005
Said, S. E., & Dickey, D. A. (1984). Testing for unit roots in autoregressive-moving average models of unknown order. Biometrika, 71(3), 599–607. https://doi.org/10.1093/biomet/71.3.599
Suleman, M. T., & Sarpong, D. (2012). Modeling stock market volatility using GARCH models: Evidence from Dar es Salaam Stock Exchange. International Journal of Business and Social Science, 3(12), 185–191.
Ullah, S., & Wajid, A. (2023). Predicting volatility of Bitcoin returns with ARCH, GARCH and EGARCH models. Future Business Journal, 9(1), 1–15. https://doi.org/10.1186/s43093-023-00219-4
Zakoian, J. M. (1994). Threshold heteroskedastic models. Journal of Economic Dynamics and Control, 18(5), 931–955. https://doi.org/10.1016/0165-1889(94)90039-6
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Jurnal Riset Pecinta Matematika

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.








